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ABSTRACT 

Some general problem areas of materials t e s t i n g  i n  a vacuum environment 

a re  discussed i n  terms of component equipment with reference t o  s p e c i f i c  

requirements. These problem areas include: (1) the  se l ec t ion  of a vacuum 

pumping system, as  r e l a t ed  t o  surface contamination, (2) pressure require- 

ments as r e l a t ed  t o  the  p a r t i c u l a r  mater ia ls  tes t ,  (3) pressure measurement 

and residual  gas composition ana lys i s ,  (4) measurement of the  inves t iga t ive  

parameter when tests a re  conducted i n  a vacuum, (5) specimen thermal control 

a t  high and low temperatures i n  vacuum, (6) e l e c t r i c a l ,  f l u i d ,  and motion 

transmission through a vacuum chamber wall. 

vacuum apparatus, as applied t o  a pa r t i cu la r  materials t e s t ,  a re  discussed. 

Also, when possible ,  the  types of measurements made with each apparatus 

are  presented. The systems discussed include zone-refining and monocrystal 

growing apparatus; t e n s i l e ,  fa t igue  and creep t e s t i n g  apparatus; cold-welding 

o r  adhesion apparatus; a combined space environment system; as well as 

vacuum appl icat ions t o  research instruments such as t h e  e lec t ron  microscope. 

Final ly ,  the  possible  s ignif icance of t h e  effects of vacuum environment on 

material  propert ies  is discussed i n  terms of both the  s c i e n t i f i c  and 

Selected case h i s t o r i e s  of 

engineering d isc ip l ines .  
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INTRODUCTION 

I t  is na tura l  t o  think of t he  ea r th ' s  atmosphere as a benign environ- 

ment. 

on some proper t ies  of materials - atmospheric corrosion of metals has been 

a problem f o r  decades. Only recent ly  have t h e  more sub t l e  effects of t h i s  

atmosphere been shown t o  inf luence a mater ia l ' s  behavior s ign i f i can t ly .  

However, t h i s  environment is not passive when one considers i ts  effects 

An 

example of t h i s  influence is  t h e  increase i n  f a t igue  l i f e  of lead by more 

than a f a c t o r  of 60 i n  a vacuum environment, as compared t o  an a i r  environ- 

ment.l 

the  mechanical proper t ies  of metals was the  ea r ly  s tud ies  of  Roscoe i n  1934.2 

He noted t h a t  oxide films only 20 atoms th ick  on the  sur face  of cadmium 

monocrystals caused a la rge  increase i n  t h e i r  s t rength .  

ning, the  e f f e c t s  of  various sur face  films, 3 9 4  sur face  conditions5r6 and 

surface environments from l iqu ids7  t o  gases,8,9 including vacuurnlo,l2 on 

the mechanical propert ies  of metals have been invest igated.  

other  s tud ies ,  it has been demonstrated t h a t  many proper t ies  of materials 

a re  a f fec ted  by ac t ive  gases such as oxygen and water vapor i n  t h e  environ- 

ment, even when the  concentrations r e l a t i v e  t o  a pressure of  1 atmosphere 

are less than p a r t s  p e r  b i l l i o n  t o  p a r t s  pe r  t r i l l i o n .  This, of course, 

e f f ec t ive ly  eliminates,  o r  a t  l e a s t  severely l i m i t s ,  t he  usefulness of  i n e r t  

gases as a t e s t  environment - t h e  lowest impurity leve ls  of ac t ive  gases 

a t t a inab le  t o  da te  f o r  i n e r t  gases are p a r t s  pe r  mil l ion.  

One of the  f irst  inves t iga t ions  which implied t h a t  a i r  may a f f e c t  

Since t h i s  begin- 

From these  and 

Unti l  recent ly  inves t iga t ions  of vacuum-sensitive material proper t ies  

have been of interest  pr imari ly  t o  the  s c i e n t i s t  o r  engineer who is studying 

a bas i c  materials property.  

mechanics of p l a s t i c  deformation within a metal, s ince  the  measured parameters 

For example, i n  an inves t iga t ion  of t he  



may be influenced by the  in t e rac t ion  of t he  environment with t h e  metal 

surface,  t he  complete e l iminat ion of t he  surface environment (by t e s t i n g  i n  

ul t rahigh vacuum) may be required before  the  p l a s t i c  deformation process 

occurring within the  metal can be d i r e c t l y  observed. With the  advent of 

space explorat ion where a vacuum replaces  a i r  as the  normal environment, 

these inves t iga t ions  have taken on new meaning and there  has been increasing 

i n t e r e s t  i n  t he  e f f e c t s  of vacuum on mater ia l  p roper t ies .  

Much progress has been made i n  t h e  last f e w  years i n  the  s t a t e  of the  

ar t  of vacuum t e s t i n g .  

vacuum apparatus now permit the  attainment of vacuum leve ls  of t he  order  

These advances i n  the  technology and economics of 

' 

of t o r r  and below, which are required i n  some materials t e s t s ,  with 

~ 
r e l a t i v e  s impl ic i ty  and a t  a f r ac t ion  of t h e  cos t  t h a t  was heretofore  possible .  

This paper w i l l  review some procedures, techniques, and equipment involved 

i n  the  t e s t i n g  of materials i n  a vacuum environment, as well  as r e s u l t s  of 

some vacuum-sensitive property inves t iga t ions .  

mater ia ls  tests t o  da te  have been performed on metals, t h i s  paper w i l l  pr imari ly  

consider metals; however, t he  general  vacuum techniques and apparatus t o  be 

discussed can be applied t o  the  t e s t i n g  of a l l  mater ia l s .  

t h i s  paper is t o  make the  test engineer more aware of the  importance of and 

the techniques ava i lab le  f o r  conducting mater ia ls  tests i n  a vacuum environ- 

ment. Problem areas  as r e l a t ed  t o  vacuum t e s t i n g  w i l l  be  discussed, as well  

as s p e c i f i c  test apparatus f o r  p a r t i c u l a r  test conditions with se l ec t ed  case 

h i s t o r i e s  from our laboratory.  

Because near ly  a l l  such 

The purpose of 

GENERAL 

The vacuum equipment and techniques employed i n  the  t e s t i n g  of  materials 

i n  a vacuum environment are d i c t a t ed  by the  type of tes t ,  as well as by the  
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economics of t h e  s i t ua t ion .  

system w i l l ,  generally,  remain the  same with only the  degree of sophis t ica-  

t i o n  varying. These bas i c  components are (1) t he  pumping system made up of 

rough and f i n e  pump s t a t i o n s  with associated instrumentation, (2) t he  vacuum 

chamber with i t s  associated equipment, and (3) t h e  vacuum measuring apparatus. 

I t  w i l l  be seen t h a t  because of t h e  wide var ie ty  of vacuum components ava i l -  

able t o  the  equipment designer, it i s  easy t o  custom-build a vacuum system 

However, t h e  b a s i c  components of  t he  vacuum 

f o r  a p a r t i c u l a r  materials t e s t .  

I have not t he  time t o  en te r  i n t o  an extended discourse on the  merits 

and f a u l t s  of avai lable  vacuum components - t h e i r  merits can be  obtained 

readi ly  from the  various vacuum component manufacturers - however, there  do 

ex i s t  some special  considerations,  techniques, and components involved i n  

the t e s t ing  of materials i n  a vacuum environment which I w i l l  discuss i n  some 

d e t a i l .  

Pumping Sys t e m  

The vacuum pumping system consis ts  of two pumping s t a t ions  - t he  rough 

pump s t a t i o n  and the  f i n e  pump s t a t i o n .  

evacuate the vacuum system i n i t i a l l y  t o  pressures a t  which the  f i n e  pump 

s t a t i o n  can be s t a r t e d .  

depending on the  cha rac t e r i s t i c s  of the  f i n e  pump s t a t i o n .  

roughing pumps from a var ie ty  of mechanical and cryosorption models. 

cryosorption pumps are  used, several  are employed a t  various s tages  of pump- 

down. 

f r e e  of any possible  o i l  vapor contamination of t he  vacuum system and can 

generally obtain lower pressures.  However, unl ike t h e  mechanical pump, they 

The rough pump s t a t i o n  i s  used t o  

This pressure i s  i n  the  range of 1 t o  20 microns, 

One can choose 

When 

These pumps have an advantage over mechanical pumps i n  t h a t  they a re  
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are not  capable of continuous operation and requi re  pe r iod ic  bakeout. 

o i l  or mercury d i f fus ion  pumps are employed i n  the  f ine  pump s t a t i o n ,  t he  

rough pumping s t a t i o n  must serve a dual r o l e  s ince  it a l s o  acts as a back-up 

or fo re l ine  pump t o  the  f ine  pump s t a t i o n .  

operating mechanical pumps must be used. 

When 

Under these  conditions,  continuously 

Vacuum pumps i n  the  f ine  pumping s t a t i o n  serve t o  evacuate the  vacuum 

system from roughing pressure down t o  the  system's u l t imate  pressure.  These 

pumps a r e  generally o i l  or mercury diffusion pumps or sput ter- ion pumps, the  

la t ter  usual ly  including a t i tanium sublimation pump, TSP. 

pump, together  with a TSP, has the  advantage of  e l iminat ing any poss ib le  o i l  

contamination of t he  vacuum system. 

pump system, t h i s  pumping system has the  disadvantages of a higher  cos t  f o r  

The sput te r - ion  

i 
i 

However, when compared t o  a d i f fus ion  i 

8 

a given pumping speed and a wider va r i a t ion  i n  pumping rates f o r  various gas 

species - t he  e a s i l y  ionized species  are pumped much more rap id ly  than the  

more i n e r t  species .  

Chamber Materials and Construction 

The vacuum chamber material and the  method of chamber f ab r i ca t ion  can 

determine the  ul t imate  pressure a t t a inab le  i n  a vacuum system. 

a l l -g l a s s  systems were required i f  the  system was t o  a t t a i n  u l t rah igh  vacuum, 

l ~ l O - ~  t o r r  or lower. 

have recent ly  been developed which permit the  use of single-wall ,  all-metal, 

or metal plus  g lass  systems even a t  these  low pressures .  

In the  pas t ,  

However, mater ia ls ,  fabr ica t ion ,  and sea l ing  techniques 

The chamber material, as well  as o the r  components exposed t o  the  vacuum 

environment, is  usual ly  300 series s t a i n l e s s  s t e e l  r e l a t i v e l y  f r e e  of porosi ty .  

When welding is  required,  gas s h i e l d  methods a r e  employed t o  minimize porosi ty  
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and welds are made only on the  i n t e r i o r  of t h e  chamber t o  eliminate any gas 

pockets between the  e x t e r i o r  and i n t e r i o r  of t he  chamber wall. 

t i o n  through the  chamber wall is a problem, which may be the  case a t  very 

low pressures o r  a t  high temperatures, a t h i n  oxide coating on the  e x t e r i o r  

of the  chamber has been found t o  minimize t h i s  problem. The development of 

the now standard all-metal seal flanges i s  a major contr ibut ion t o  the  use 

of metal vacuum systems. With t h i s  technique, a metal gasket - usual ly  made 

of OFHC copper - is compressed between two r idges on the  two mating f langes.  

If gas permea- 

System Contamination 
! 
i 
1 I n  many materials t e s t s  conducted i n  a vacuum t o  inves t iga te  a p a r t i c u l a r  

t 
P J  

' 

material property which is  environment sens i t i ve ,  it is important t h a t  t he  

surface of t he  t e s t  mater ia l  be i n i t i a l l y  f r e e  of foreign contamination, o r ,  

i n  some tests,  t h a t  t h i s  contaminant (say an oxide fi lm) be inherent  t o  the  

t e s t  material. This means the  mater ia l  sur face  must be cleaned by heat ing 

the  specimen t o  high temperatures,13 by ion-sputtering,14 o r  by some o the r  

i n  s i t u  technique, o r  t h a t  t he  nature  of the  contaminant be known. 

The vacuum leve l ,  of course, determines the  degree of res idua l  gas contam- 

inants  i n  the environment. 

be to l e ra t ed  i n  many mater ia ls  tests. 

usually the  diffusion-  o r  mechanical-pump. 

on the  degree of o i l  contamination t h a t  can be to l e ra t ed  i n  a p a r t i c u l a r  mater ia ls  

However, foreign contaminants, such as o i l ,  cannot 

The source of t h i s  contaminant is 

The method of pumping o f t en  depends 

test .  

The pumping system most f r e e  of o i l  contamination u t i l i z e s  a cryosorption- 

type roughing pump together  with a sput ter- ion f i n e  vacuum pump. 

many times the  use of such a pumping system is not  economically f eas ib l e .  

However, 
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If a mechanical roughing pump is used, t h e  vacuum environment should always 

be shielded from o i l  contamination by a zeo l i t e  t r a p  and/or a l iquid-nitrogen 

t rap  with antimigration b a f f l e s .  

employed, t h e  same types of t raps  must be used. 

migration i n t o  the  vacuum environment can be a problem; therefore ,  methods 

of determining the  exis tence and extent  of o i l  contamination a re  important. 

Likewise, when o i l  d i f fus ion  pumps a re  

Even with these  t raps ,  o i l  

There are several  methods of detect ing o i l  i n  a vacuum. A mass spectrom- 

e t e r  may be used t o  examine the res idua l  gas spectrum.15 

very sens i t i ve  but  t he  mass spectrometer is expensive. 

This technique i s  

A standard dual-beam 

u l t r a v i o l e t  absorption spectrophotometer may be used t o  determine the  t o t a l  

amount of o i l  co l lec ted  during a run.16 

but i s  not an i n  s i t u  technique and gives only the  average co l lec t ion  r a t e  

over t he  period of the  tes t .  

developed. This technique is  extremely sens i t i ve  but  is  l imited by the  

shor t  h a l f - l i f e  avai lable  and requires  the  use of an i r r a d i a t i n g  reac tor .  

A quartz-crystal  microbalance has been used1* but  t h i s  technique does not 

discriminate among o i l s  and o ther  condensables. And, l a s t l y ,  a single-beam 

u l t r a v i o l e t  spectrophotometer technique has been developed which w i l l  con- 

tinuously monitor t he  presence and ex ten t  of o i l  contamination i n  s i t u .  l9 

Such a system i s  shown schematically i n  Figure 1 and cons is t s  simply of radia-  

t i on  from a mercury vapor lamp which penetrates  a t ransparent  cooled co l l ec t -  

ing disk i n  the  vacuum system. 

means of a monochromator and photomultiplier system. 

of- the-ar t ,  t h i s  technique i s  not qu i t e  as sens i t i ve  as some o ther  techniques; 

and, i n  determining the  extent  of contamination, it is l imited t o  f i l m  growth 

r a t e s  f o r  o i l  of grea te r  than 2 A i n  thickness p e r  minute. 

This technique is  very sens i t i ve  

1 ,  

I 

A radioact ive t r a c e r  technique17 has a l so  been 

The t ransmit ted beam i s  then analyzed by 

With the  present s t a t e -  
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Pressure Requirements 

The pressure requirements f o r  any p a r t i c u l a r  mater ia ls  t e s t  w i l l  depend 

on both the  mater ia l  and property being invest igated.  

molecule s t r i k i n g  the  surface of a t e s t  specimen w i l l  adhere, Table I l ists  

Assuming t h a t  every 

values of t h e  molecular incidence rate and time t o  form a monolayer f o r  a i r  

a t  25°C.20 

which i s  very sens i t i ve  t o  any sur face  contaminant - f o r  example, t he  nuclea- 

t i o n  of a metal vapor on a f r e sh ly  cleaved subs t r a t e  - pressures w i l l  be  

required t h a t  w i l l  allow the  surface t o  remain e s s e n t i a l l y  c lean f o r  t he  

I t  can be seen t h a t  i f  the  inves t iga t ion  involves a property 

1 duration of the  t e s t .  

Tests t h a t  involve more dynamic proper t ies ,  such as t e n s i l e  and f a t igue  
I - ; deformation s tudies ,  can be  accomplished a t  pressures higher  than would be 

i 

apparent from Table I .  

Figures 2 and 3.  

end of the  f i rs t  l inear s tage  i n  vacuum, as compared t o  t h a t  i n  a i r  a t  760 t o r r ,  

versus pressure f o r  magnesium monocrystals or ien ted  f o r  basa l  g l ide  which 

were t e s t e d  i n  tension21 a t  various s t r a i n  rates. I t  can be seen t h a t  t he  

t r a n s i t i o n  from proper t ies  c h a r a c t e r i s t i c  of a i r  t o  those of vacuum occurs 

i n  the  pressure range from loq6  t o  

tests. 

f o r  polycrystal  magnesium. 

propert ies  of magnesium polycrys ta l l ine  specimens occurs a t  10-3 t o  10-6 t o r r  

a t  2 cycles per  second22 and a t  10' t o  

Examples of r e s u l t s  of such tests a r e  shown i n  

Figure 2 is a p l o t  of the  change i n  shear  s t r a i n  a t  the  

t o r r ,  f o r  the  s t r a i n  rates of these  

Figure 3 is a p lo t  of number of cycles t o  f a i l u r e  versus pressure 

As can be seen, t he  t r a n s i t i o n  of t he  f a t igue  

t o r r  a t  30 cycles p e r  second.23 

The reasons f o r  these  var ia t ions  i n  the  t r a n s i t i o n  pressures  from property 

t o  property are t h a t  competing processes a r e  occurring such as t h e  rate of 
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f r 

I .  

TABLE I 

Time to Form a Monolayer for Air at 25' C 

Time to form 
Pressure, torr 

760 

1 

10-3 

10-6 

20-9 

10-12 

10-15 

monolayer, sec 

2.63~10-~ 

2.oox10-6 

2.00~10-3 

2.00x100 

2.00~103 

2 ,  oox 106 

2.00~109 
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clean surface formation by deformation i n  a tensi le  tes t  or by crack propaga- 

t i on  i n  a fa t igue  test  and the  rate of clean surface contamination by 

adsorption. 

Many o ther  examples could be given t o  demonstrate t he  dependence of the  

pressure requirement on the  p a r t i c u l a r  tes t  being conducted; however, it is 

s u f f i c i e n t  t o  say t h a t  t h i s  can be a major consideration i n  the  design and 

required sophis t ica t ion  of the  vacuum apparatus f o r  a p a r t i c u l a r  set  of t e s t  

conditions . 

i Pressure Measurement 
8 

J A knowledge of the  pressure of t h e  vacuum environment 

t o  s tud ies  of pressure-dependent phenomena. Additionally,  
G I  

is fundamental 

i t  i s  of ten  

important t h a t  t he  composition of the  vacuum environment be known. 

are  many types of vacuum gages, some of which are capable of measuring t o t a l  

pressures below t o r r .  Some of t h e  commonly used pressure gages a re  

l i s t e d  i n  Table I1 by operational mode with t h e i r  approximate useful  pressure 

range. The pr inc ip les  on which these gages a r e  based, as well as the  d e t a i l s  

of t he  s p e c i f i c  gages, have been discussed by others  i n  g rea t  detai120.28 and 

thus w i l l  not be presented here.  

There 

The a b i l i t y  t o  measure pressure with a reasonable degree of confidence 

f o r  a given vacuum gage is ,  of course, r e l a t e d  t o  t h e  method of ca l ibra t ion ,  

as well as t o  i t s  inherent r epea tab i l i t y .  

have been developed. 

i n  which a standard gage i s  used t o  measure the  pressure a t  which the  test  

gages a re  then ca l ibra ted .  Another method of ca l ib ra t ion  u t i l i z e s  the  

pressure- ra t io  technique. 29 

Several gage ca l ib ra t ion  systems 

Probably the  most simple i s  t h e  direct-comparison type 

This technique has the  advantage of extending 
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TABLE I1 

The Basic Operational Modes of Pressure Gages Employed t o  Measure 

Vacuum and Their  Approximate Useful Pressure Range 

Operational Mode 

Force 

Compress ion 

Transport 

.Radioactive ion iza t ion  

t Discharge ion iza t ion  
t 

I 
i 

* Thermionic ion iza t ion  

Gas analysis  ion iza t ion  

Approximate useful  range 

( to r r )  

760 - 1 
100 - 10-5 

760 - 
760 - 10-5 

10 - 10-11 

10-3 - 10-9 

Typical vacuum gages 

Liquid manometer 

McLeod gage24 

Thermocouple gage 

Alphatron2 

Cold-cathode-ionization 

gage (Redhead gage26) 

Hot-cathode-ionization 

gage (Bayard-Alpert gage2 7, 

Residual gas mass spectrometer 
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the  pressure range i n  which the  test  gage can be compared t o  the  standard 

gage. 

t o  1 ~ l O - l ~  t o r r  is  shown i n  Figure 4.30 

the  complexity of such an apparatus. 

two test  chambers and associated equipment suspended from a bulkhead. An 

outer  chamber shown at  the  r i g h t  can enclose t h i s  equipment with a vacuum 

A pressure- ra t io  gage comparison system s u i t a b l e  f o r  gage ca l ib ra t ion  

This f igu re  is  shown t o  ind ica te  

This p a r t i c u l a r  system cons is t s  of t he  

environment t o  f a c i l i t a t e  a t t a in ing  the  very low required pressures i n  t h e  

test chambers. 

against  a standard gage a t  1 ~ 1 0 - ~ O  t o r r .  

With t h i s  system a test  gage can be ca l ib ra t ed  a t  t o r r  

i As has been mentioned, a knowledge of t he  res idua l  gas composition i n  

the  vacuum can of ten  be important because various component gases i n  the 

vacuum environment can a f f e c t  t he  r e s u l t s  of a mater ia ls  t e s t .  An example 

of t h i s  e f f e c t  i s  shown i n  f igu re  5 i n  which t h e  f a t igue  l i f e  i n  the  test-  

gas environment i s  compared with t h e  fa t igue  l i f e  i n  vacuum f o r  magnesium, 

copper, brass ,  and two aluminum a l loys .  

a given metal var ies  s ign i f i can t ly  when t e s t e d  i n  d i f f e ren t  gases, and, f o r  

a given gas, it var ies  s ign i f i can t ly  f o r  the  metals t e s t ed .  

I t  i s  seen t h a t  t he  f a t igue  l i f e  f o r  

An addi t ional  consideration i n  gas composition monitoring is t h a t  t he  

residual  gas composition can vary s ign i f i can t ly  from vacuum system t o  vacuum 

system and, i n  f a c t ,  from pumpdown t o  pumpdown i n  the  same system. This 

l a t t e r  effect i s  due t o  small leaks which may develop, changes i n  the  pumping 

speed of the  vacuum pumps due t o  contamination, etc. 

and meaningful r e s u l t s  i n  many mater ia ls  t e s t s ,  a knowledge of t h e  residual  

gas composition during each test  may be imperative. 

e x i s t  f o r  determining the  res idua l  gas environment on the  bas i s  of gas 

Thus, f o r  consis tent  

Several instruments 
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ioniza t ion  and separat ion.  These instruments include quadratic-sector,  

quadrupole, monopole, and t ime-of-f l ight  type mass spectrometers. The theory 

and use of these instruments have been discussed i n  d e t a i l  e l ~ e w h e r e ~ l ’ ~ ~  and 

w i l l  not be presented here.  

Sensors f o r  Measuring Material Propert ies  

Sensing the  p a r t i c u l a r  t e s t  parameters on which the  mater ia ls  tes t  is  

based, such as stress and s t r a i n  i n  a deformation t e s t ,  can be a severe 

problem when the  test is  conducted i n  a vacuum. 

t h a t  t h e  sensing instrument be placed i n  contact with the  specimen. 

I t  is  many times imperative 

In an 

a i r  tes t ,  t h i s  requirement is not a p a r t i c u l a r  problem and standard sensing 

instruments can be used; however, i n  vacuum t h i s  i s  not necessar i ly  the  

case because of v o l a t i l e  components i n  the  instruments. 

Let us consider a deformation test  as an example of t h e  problems 

encountered i n  sensing i n  a vacuum environment. 

about 

A t  pressures grea te r  than 

t o r r ,  t he  standard load c e l l  and s t r a i n  measuring apparatus, such 

as a res i s tance  s t r a i n  gage o r  LVDT, l inear-var iable-different ia l - t ransformer,  

may be used. However, even a t  these r e l a t i v e l y  high pressures,  care must 

be exercised t o  ensure t h a t  t he  instruments used do not contain highly vola- 

t i l e  mater ia ls .  A t  pressures i n  the  range of t o  t o r r ,  special ized 

load c e l l s  and s t ra in  sensing apparatus must be used. 

commercially ava i lab le  and contain such things as po t t ing  compounds f r e e  of 

v o l a t i l e  components, o r  enclosed i n  a hermetically sealed case, etc.  

pressures l e s s  than 

ra tus  is  not compatible with the  vacuum environment and many times complex 

external  sensor systems must be developed. 

These instruments are 

A t  

t o r r ,  most commercial s t r e s s - s t r a i n  sensing appa- 

One such typ ica l  system i s  shown 
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i n  f igu re  6. This system employs an ex terna l  load ce l l  connected t o  the  

tensi le  test system through a welded metal bellows. Specimen elongation 

can be measured ex terna l ly  by t h e  use o f ,  f o r  example, an op t i ca l  s t r a i n  

sensing system. 

chamber, t h e  op t i ca l  system would measure the  elongation of t h e  specimen by 

comparing the  r e l a t i v e  motion of t he  two ends of t he  gage sec t ion .  Depend- 

ing on the  op t i ca l  system, t h i s  comparison would be made physical ly  by t h e  

inves t iga tor  o r  e l ec t ron ica l ly  by r a t h e r  complex e l ec t ron ic  equipment. 

By s ight ing  through a t ransparent  window on t h e  vacuum 

Specimen Heating and Cooling 

When specimen temperatures o ther  than ambient a r e  required i n  a vacuum 

' environment, temperature uniformity and control  becomes a problem p a r t l y  

because of the  lack of convective heat  t r ans fe r .  

ambient, t h e  desired specimen temperature can bes t  be  obtained by conduction. 

A t  temperatures below 

This i s  done through gr ips  or blocks i n  int imate  contact  with the  specimen 

which a re  cooled by some coolant,  such as  l i qu id  ni t rogen.  Depending on 

specimen length and temperature uniformity required,  it i s  of ten  necessary 

tha t  t he  specimen be shielded from sources of r ad ia t ive  hea t  (e.g. ,  chamber 

walls) by a cold shroud. 

A t  specimen temperatures above ambient, conductive, r ad ia t ive ,  and 

induction heat ing can be used. 

times des i rab le  t o  i s o l a t e  the  res i s tance  heat ing filament from the  vacuum 

If r ad ia t ive  heat ing i s  employed, it is  many 

environment by the  use of an envelope such as  a sealed quartz  tube. Such 

inf ra red  heaters  with tungs ten  fi laments and quartz  envelopes a re  commercially 

ava i lab le .  If t h e  res i s tance  element is  i n  d i r e c t  contact with t h e  vacuum 

environment, care must be taken t o  select high pu r i ty  elements t h a t  have a 

minimum of out-gassing when they a re  hot .  
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In  high-temperature t e s t ing ,  consideration must a l s o  be  given t o  minimiz- 

ing heat ing of chamber walls and internal components. This i s  because of 

t he  increased outgassing rates and v o l a t i l i z a t i o n  of surface contaminants 

which occur when these components are heated. Cooled shrouds and/or hea t  

r e f l ec to r s  around the  specimen are of ten  required t o  minimize t h i s  problem. 

Dynamic Feedthroughs 

In most materials involving the  manipulation of t he  specimen i n  a vacuum 

environment, it i s  of ten  physical ly  impossible and a l s o  undesirable t o  have 

>the in tegra ted  t e s t  system within the  vacuum jacke t .  Therefore, motion feed- 

throughs are an important p a r t  of t he  test  design. Depending on the  test 

l requirements, many commerical systems are ava i lab le ,  some of which are shown 

conceptually i n  f igure 7. 

"O-ring" seal, f igure  7(a) ,  which permits the  transmission of l i nea r  o r  

The most simple motion feedthrough uses t h e  simple 

rotary motion. 

Such a seal is generally l imited t o  use a t  pressures t o  about 

outgassing and unacceptable leak r a t e s .  Below t o r r ,  t h e  methods of 

motion t ransmi t ta l  become more complex. For pos i t i ve  l i n e a r  motion, t he  

This seal is a compressed polymeric "O-ring" on a s h a f t .  

t o r r  because 

welded me ta l l i c  bellows is generally employed, f igure  7(b) . 
has excel lent  vacuum in t eg r i ty .  

This feedthrough 

I t  should be pointed out t h a t  consideration 

must be given t o  forces  applied t o  the  load rod by t h e  vacuum force component 

on the bellows as well as by i t s  spr ing constant.  

feedthrough systems f o r  t ransmit t ing ro t a ry  motion. 

not required,  a magnetic feedthrough (Figure 7(c))  is  commonly used. In  t h i s  

There are several excel lent  

When pos i t i ve  motion i s  

system, a magnet outs ide the  vacuum chamber is placed around an i ron  core 

within the  vacuum chamber. The core and magnet are separated by a nonmagnetic 
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can which i s  an in t eg ra l  p a r t  of t he  vacuum jacke t .  

the ex terna l  magnet w i l l  r e s u l t  i n  a coupled motion of t h e  i ron  core.  

pos i t ive  ro ta ry  motion is  required,  t h e  me ta l l i c  bellows sealed wobble s t i c k ,  

f igure  7(d),  o r  a harmonic-drive system33 with a f l e x i b l e  vacuum can, f i g -  

ure 7(e) ,  may be employed. 

Thus, any ro t a t ion  of 

When 

S t a t i c  Feedthroughs 

Many s t a t i c  feedthroughs f o r  such e n t i t i e s  as low frequency and R.F.  

e l e c t r i c a l  transmission through a vacuum jacket are commercially ava i lab le .  

e t a i l e d  information on these can e a s i l y  be obtained and thus w i l l  not be 
-- 

discussed here .  However, f l u i d  transmission through a vacuum environment 

can be a s ign i f i can t  problem, pr imari ly  because of leaks, and w i l l  be discussed 

b r i e f l y .  

connections i n  the  transmission tubes within t h e  vacuum chamber. Since 

Figure 8 i s  a diagram of a method t h a t  eliminates any mechanical 

mechanical connections i n  the  transmission l i nes  have the  g rea t e s t  propensity 

t o  leak, t h i s  transmission method has a d i s t i n c t  advantage over most o thers .  

As  i s  seen from the  f igure ,  a continuous transmission tube i s  welded t o  a 

meta l l ic  f lange which has a reverse seal; t h a t  is ,  it i s  sealed a t  t he  i n t e r i o r  

r a the r  than the  ex te r io r  of the  vacuum jacket. Additionally,  t h i s  system 

allows easy removal of the  transmission tube assembly from t h e  vacuum chamber. 

CASE HISTORIES 

Because numerous vacuum components with various degrees of sophis t ica t ion  

a re  readi ly  ava i lab le  and are interchangeable, and because each materials 

test requires  a s p e c i f i c  se t  of t e s t  conditions,  vacuum apparatus i s  generally 

designed f o r  a p a r t i c u l a r  mater ia ls  tes t .  The apparatus and techniques 
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discussed above, as well as o ther  ideas,  have been applied by inves t iga tors  

i n  our laboratory t o  the design of vacuum apparatus f o r  p a r t i c u l a r  t e s t  

requirements. 

materials tests. 

meaningful observations stemming from the  use of t h i s  o r  similar apparatus 

with an example, when possible,  and, second, i n  terms of the  system's b a s i c  

capabi l i t i es  t o  demonstrate the  use of vacuum techniques as discussed above. 

Selected case h i s t o r i e s  w i l l  be  presented f o r  a var ie ty  of 

Each tes t  system w i l l  b e  discussed, f i rs t  i n  terms of any 

Vacuum Zone-Refining and Monocrystal Growing Apparatus 

I t  i s  generally known t h a t  small amounts of impurit ies i n  a metal may r a t h e r  

" d r a s t i c a l l y  affect many mechanical and physical propert ies  of t h a t  metal. 

An example is  the e f f e c t  of pur i ty  on t h e  deformation behavior of i ron  s i n g l e  

c rys ta l s  a t  -196OC. I t  has been observed t h a t  i n  r e l a t i v e l y  impure i ron 

c rys ta l s  a t  -196"C, a l l  o r ien ta t ions  a r e  not duc t i le ;  r a t h e r  a d u c t i l e - b r i t t l e  

boundary e x i s t s  where f a i l u r e  mode changes from d u c t i l e  tear ing  t o  b r i t t l e  

cleavage.34 E d m o n d ~ o n ~ ~  observed t h a t  t h i s  boundary i s  about 16" from the 

(100) pole of the uni t  t r iangle ,  and c r y s t a l s  or iented nearer  than 16" t o  

the (100) were completely b r i t t l e .  

t h a t  increasing the  pur i ty  of i ron  c r y s t a l s  has a tendency t o  move t h i s  

boundary toward the (100) pole. 

on c rys ta l s  grown by the  floating-zone technique showed t h a t  s u f f i c i e n t  

puri ty  could be obtained t h a t  a l l  or ientat ions of c r y s t a l s  t e s t e d  a t  -196OC 

were d u c t i l e  and, i n  fact ,  t h e  grea tes t  s t r a i n  t o  f r a c t u r e  was observed f o r  

or ientat ions near the  (100) pole. 

Biggs and Prat t36 have f u r t h e r  shown 

Studies conducted by Hughes and Barton37 

To invest igate  the e f f e c t s  of se lec ted  impuri t ies ,  as well as the  

propert ies  of the  pure metal i t se l f ,  it i s  e s s e n t i a l  t h a t  materials be produced 

I 
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having the  highest  possible  pu r i ty .  

re f in ing  and monocrystal growing apparatus i n  which such high-puri ty  materials 

can be processed. This system can accommodate specimens from 4 t o  1 2  inches 

long and up t o  1 /2  inch i n  diameter, depending on t h e  s p e c i f i c  mater ia l ,  and 

has the  capabi l i ty  of ul t rahigh vacuum pur i f i ca t ion  of re f rac tory  metals and 

Figure 9(a) i s  a photograph of  a zone- 

ceramics. 

well as by vacuum degassing and evaporation of v o l a t i l e  impuri t ies  from the  

molten zone. Additionally, t h i s  system can grow smooth, concentric,  cylin- 

d r i ca l  o r  hemispherical monocrystals of random o r  predetermined or ien ta t ions .  

Pur i f ica t ion  occurs by the  standard zone r e f in ing  technique, as 

The vacuum port ion of t h e  apparatus has an all-metal-sealed s t a i n l e s s  

s t e e l  vacuum chamber t o  lessen t h e  p o s s i b i l i t y  of leaks and t o  permit high 

temperature bakeout of t he  chamber t o  faci l i ta te  the  removal of v o l a t i l e  
- 
”. contaminates from t h e  chamber walls. 

with a t i tanium sublimation pump t o  eliminate o i l  contamination and is capable 

of operating a t  pressures of t h e  order of 

The system uses an ion-pump together  

t o r r .  

The t i tanium sublimation pump is  surrounded by a liquid-nitrogen-cooled 

shroud on which the  t i tanium i s  sublimed. The use of t h i s  shroud decreases 

the pump-down time by increasing the  s t i ck ing  coef f ic ien t  and residence time 

of species t h a t  contact the titanium-covered shroud. 

the system can be pumped t o  5 ~ 1 0 - ~  t o r r  i n  2-1/2 hours. 

Employing t h i s  technique 

The zone re f in ing  module within the  vacuum jacket  i s  al l -metal .  One 

contact surface of a l l  s l i d i n g  surfaces  is  gold-plated t o  reduce f r i c t i o n  

and minimize cold-welding. 

This assembly supports t he  specimen t o  be  pur i f ied ,  ro t a t e s  t h e  specimen, 

and contains a small goniometer which may be used f o r  t h e  growth of or iented 

Figure 9(b) i s  a photograph of t h e  module assembly. 
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monocrystals. The se lec ted  material i s  p u r i f i e d  o r  a c r y s t a l  i s  grown by 

the  movement of a narrow molten zone along t h e  specimen. This zone, formed 

by an e lec t ron  beam, is s u f f i c i e n t l y  small t h a t  t he  configuration of t he  

specimen is re ta ined  by sur2ace tension without t h e  use of ex terna l  cons t ra in ts  - 

the  f loa t ing  zone technique. This technique f a c i l i t a t e s  pu r i f i ca t ion  by 

maintaining the  vacuum environment i n  contact with t h e  zone during s o l i d i f i c a -  

t ion ,  thus el iminat ing contamination by containers.  

Uniaxial Testing 

To date ,  the bulk of t h e  s tud ies  conducted on t h e  e f f e c t s  of a vacuum 

environment have been concerned with t h e  mechanical behavior of metals. I t  

- has been observed t h a t  t he  s ign i f i can t  e f f e c t  of vacuum on magnesium, f o r  

example, is  t o  increase i t s  d u c t i l i t y .  

dependent on grain s ize ,  as shown i n  f igu re  

The magnitude of t h i s  e f f e c t  i s  
-, 

This f igu re  is  a p l o t  of 

stress versus s t r a i n  f o r  polycrystal  magnesium a t  two pressures and grain 

s i z e s .  I t  i s  seen f o r  t h i s  specimen cross sec t ion ,  t h a t  a vacuum environ- 

ment of 5 ~ 1 0 - ~  t o r r  had no observable e f f e c t  on t e n s i l e  proper t ies  a t  a 

grain s i z e  of 0.01 mm but  did a t  a l a rge r  gra in  s i z e  of 0.20 mm. 

pronounced e f f e c t  of vacuum was observed i n  the  change i n  t e n s i l e  propert ies  

of monocrystals as shown i n  f igure  11.21 

stress versus shear s t r a i n  a t  a constant strain r a t e  and varying pressures 

f o r  monocrystal magnesium oriented for basa l  g l ide .  

environment mainly affects the  extent  of t he  f irst  l i n e a r  s tage.  

e f f ec t s  have been observed i n  invest igat ions of o ther  metals. 

A more 

This f igu re  i s  a p l o t  of shear 

I t  i s  seen t h a t  a vacuum 

Similar  

Equipment designed t o  inves t iga te  the  e f f e c t s  of vacuum on such propert ies  

as mater ia ls '  s t rength and d u c t i l i t y  i n  uniaxial  tension must have the  
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capabi li t y  of reaching 

the  desired parameters 

apparatus designed f o r  

pressures from 1 ~ 1 0 ' ~  t o  1 ~ 1 0 - ~ O  t o r r ,  depending on 

of t h e  tes t .  

uniaxial  t e s t i n g .  

Figure 12  is  a schematic diagram of an 

The vacuum system f o r  t h i s  apparatus 

is  r e l a t i v e l y  inexpensive. 

small s t a i n l e s s  steel  chamber with all-metal seals, is  rough pumped by a 

zeolite-trapped mechanical pump, and is  f i n e  pumped by a sput te r - ion  pump 

in tegra ted  i n t o  the  t e s t  chamber, as w e l l  as  by a t i tanium sublimation pump 

exposed t o  a liquid-nitrogen-cooled shroud. The system i s  designed t o  f i t  

between the  columns of a standard t e n s i l e  t e s t i n g  machine t o  e l iminate  any 

spec ia l ly  designed loading apparatus. 

capabi l i ty  of 1 ~ 1 0 - ~ O  t o r r  o r  b e t t e r .  

be introduced i n t o  the  chamber, when desired,  by t h e  use of a control led 

leak valve, and t h e  gas composition can be measured by a quadrupole-type 

res idua l  gas analyzer. Motion is t ransmit ted i n t o  t h e  chamber by bellows- 

sealed load rods.  

For reasons already discussed, it cons is t s  of a 

This vacuum system has a pressure 

Additionally,  preselected gases can 
- 

- 

Both load and specimen def lec t ion  a r e  measured ex terna l ly .  

To faci l i ta te  the  attainment of low pressures ,  bakeout heaters  a r e  used 

f o r  rapidly removing v o l a t i l e  species  from the  chamber wal ls .  

heating elements f o r  many bakeout systems a re  ex terna l  t o  t h e  chamber, t he  

elements f o r  t h i s  system are contained within the  vacuum chamber. 

consis t  of tungsten res i s tance  elements within sealed quartz  tubes; thus,  

they are i so l a t ed  from the  vacuum environment, Figure 13. 

system has several  advantages over t he  normally used ex terna l  system i n  t h a t  

it i s  r e l a t i v e l y  inexpensive t o  i n s t a l l ,  it uses a nominal amount of power 

(8 amp a t  110 V f o r  the  system shown), it has a much f a s t e r  response time, 

it heats  pr imari ly  those surfaces  and components exposed t o  the  vacuum 

While the  

They 

This bakeout 
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environment, it does not requi re  ex terna l  i n su la t ion  t o  obtain reasonable 

bakeout temperatures (up t o  35OoC), and it maintains t h e  clean e x t e r i o r  

of t he  vacuum chamber thus f a c i l i t a t i n g  t h e  mounting of equipment, etc. 

Fatigue Testing 

From the  known effect of vacuum on t h e  deformation behavior of a metal, 

pa r t i cu la r ly  near-surface deformation, one must deduce t h a t  a vacuum environ- 

ment may have a major influence on the  f a t igue  l i f e  of a mater ia l .  This 

has been s tudied ex tens ive ly . lO, l l  

by Sumsion i n  t h i s  Proceedings, and i s  a l s o  reported elsewhere.23 

One such study i s  included i n  t h e  paper 

Br ie f ly ,  

f igure  14 i s  a typ ica l  example of the  effect of vacuum on t h e  f a t igue  prop- 

e r t i e s  of metals. - This f igu re  is  the  da ta  f o r  a polycrystal  magnesium- 

thorium a l loy  and is  a p l o t  of maximum stress versus f a t igue  l i f e .  

seen from the  f igure ,  a s ign i f i can t  increase i n  fa t igue  l i f e  i s  observed 

As is 
- 

f o r  a given maximum stress i n  vacuum, when compared t o  an a i r  environment. 

Figure 15 shows a simple vacuum fa t igue  apparatus which employs a 

cant i lever  type specimen. As is  seen from the  f igure ,  the  vacuum system is  

designed t o  be mounted on a standard commercial fa t igue  machine t o  eliminate 

the need f o r  a spec ia l  test  apparatus. 

pressures down t o  1 ~ 1 0 - ~  t o r r  and i s  pumped by the  use of a sput ter- ion pump 

The vacuum system is  capable of 

together  with a t i tanium sublimation pump. 

t o  the  specimen by a metal-bellows-sealed load rod. 

The cyc l i c  load i s  t ransmit ted 

Also included i n  t h i s  

system is a res idua l  gas mass spectrometer due t o  the  extreme importance of 

the composition of the  res idua l  environment on t h e  observed fa t igue  proper t ies ,  

f igure  5. 
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Creep Testing 

Creep deformation has been shown t o  be an environment-sensitive mechanical 

An example of t h i s  effect i s  shown i n  f igu re  16” property f o r  several metals. 

f o r  polycrystal ,  high-purity magnesium. 

s t r a i n  rate versus the  rec iproca l  of absolute temperature a t  a constant 

applied stress. 

i n  an air-argon environment and the  s o l i d  l i n e  with da ta  poin ts  i s  f o r  t e s t s  

conducted a t  pressures less than 4 ~ 1 0 - ~  t o r r .  

of vacuum is  a function of t he  tes t  temperature. 

magnesium is increased a t  low temperatures and decreased a t  high temperatures 

i n  vacuum as  compared t o  an air-argon environment. 

This f igu re  is  a p l o t  of s teady-s ta te  

The dashed l i nes  a re  curves determined from da ta  obtained 

As can be seen, t h e  effect 

The creep res i s tance  of 

I 

Figure 17 i s  a schematic drawing of a medium-temperature, vacuum creep 

apparatus capable of  pressures of the  order of lx10e9 t o r r  and temperatures 

up t o  600’ C. 

l ess  s t e e l  vacuum chamber and a titanium sublimation pump having a l iquid-  

nitrogen-cooled surface.  

specimen i n  the  tors ion  mode by the  use of a large magnetic rotary-motion 

feedthrough. Specimen deformation i s  monitored ex terna l  t o  the  chamber. The 

specimen is  heated by quartz-sealed r e s i s t ance  hea ters  surrounded by s t a i n -  

less  s t e e l  hea t  r e f l ec to r s  t o  e l iminate  excess heat ing of o ther  components 

i n  the  system. 

- 

I t  is pumped with a sput te r - ion  pump in t eg ra l  with the  s t a i n -  

Dead-weight load is  applied t o  a hollow cyl indr ica l  

Figure 18 has photographs of a high-temperature ultrahigh-vacuum creep 

apparatus designed t o  f i t  between the  columns of a standard t e s t i n g  machine. 

This system has a single-wall  s t a i n l e s s  s t e e l  vacuum chamber, pumped with a 

sput ter- ion pump and a t i tanium sublimation pump and i s  capable of ul t imate  
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pressures of less than 5 ~ 1 0 - l ~  t o r r  as  measured by a res idua l  gas mass 

spectrometer. 

3000' C. 

nitrogen cooling and the  high temperatures are obtained by a res i s tance-  

The operat ing temperature range of t h e  t e s t  zone i s  -196" t o  

The low-temperature capab i l i t y  is, of course, obtained by l iquid-  

heated tungsten mesh element. 

capable of pressures of less than 1 ~ 1 0 - ~ O  t o r r  and a t  3000" C, 1 ~ 1 0 ' ~  t o r r .  

These pressures  appear t o  be l imited only by t h e  vapor pressure of t h e  tungsten 

fi lament.  

machine, t h i s  system may a l so  be employed f o r  t e n s i l e  t e s t i n g ,  uniaxial  fa t igue  

t e s t ing ,  etc. 

A t  t es t  temperatures of 1000" C,  t h e  system is 

Because the  system i s  designed t o  f i t  a standard t e n s i l e  test  

This t e s t  apparatus i s  being applied t o  the  study of t he  high-temperature 

creep behavior of re f rac tory  metals. Such a system i s  required because of 

the high chemical r e a c t i v i t y  of these  a l loys  a t  e levated temperatures with 

environments containing carbon, oxygen, o r  ni t rogen.  This reac t ion  i n  re f rac-  

tory metals containing a l loy  additions of such elements as  hafnium, zirconium, 

and t i tanium r e s u l t s  i n  the  formation of s t a b l e  carbides,  oxides, o r  n i t r i d e s  

which can cause s ign i f i can t  changes i n  t h e  mechanical behavior of t he  a l loy .  

Adhesion Testing 

Adhesion, o r  cold welding, and a r e l a t e d  phenomenon, f r i c t i o n ,  a r e  

environment-sensitive propert ies  of metals. Uncontaminated metal surfaces  

(clean) w i l l  form an in t e r f ace  bond having a mechanical s t rength as grea t  

as the  parent  metal. 

air ,  and o ther  such gases w i l l  s i gn i f i can t ly  decrease the  adhesion of i n i t i a l l y  

clean metal surfaces .  38 3 39 

Invest igators  have shown t h a t  small amounts of oxygen, 

Thus, surface films, such as  oxides, i n h i b i t  
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the  adhesion of most metals and make t h e  use of a vacuum environment mandatory 

f o r  t he  preparat ion and study of t he  adhesion behavior of uncontaminated 

metals. 

Numerous methods e x i s t  f o r  t he  study of t he  phenomenon of adhesion; how- 

ever, i n  a l l  s tud ie s  the  metal surfaces  must be clean i n i t i a l l y .  

approach t o  t h i s  requirement i s  t o  work with specimens which a r e  f rac tured  

i n  s i t u  a t  pressures of the  order  of 

have been conducted i n  t h e  vacuum apparatus shown i n  f igu re  1 2 ,  which f i t s  

between the  columns of a standard t e s t i n g  machine. 

apparatus have been discussed e a r l i e r .  

simple notched ba r .  The t e s t  procedure i s  t o  f r ac tu re  the  specimen i n  vacuum, 

expose the  f r ac tu re  surfaces t o  the  desired environment f o r  a measured 

in t e rva l ,  and r e j o i n  the  surfaces  with a given compressive load. 

force f o r  subsequent f r ac tu re  is  a measure of t he  adhesion. 

an example of t he  data  obtained i n  t h i s  apparatus.41 

of t he  adhesion coe f f i c i en t ,  a, versus the  exposure t o  se lec ted  environments. 

The adhesion coef f ic ien t  is defined as the  load required t o  separate  an 

in te r face  j o i n t  divided by t h e  load applied t o  form the  j o i n t .  

time is  simply t h e  p a r t i a l  pressure of t he  gas o f  i n t e r e s t  mult ipl ied by 

the length of time the  clean in t e r f aces  a re  exposed t o  t h i s  environment. 

As i s  seen from the  f igure ,  various gases a f f e c t  adhesion t o  d i f f e ren t  degrees. 

O f  those gases shown, oxygen is the  most severe.  

The simplest  

t o r r . 40s41  Such adhesion s tud ie s  

The capab i l i t i e s  of t h i s  

The t e s t  specimen cons is t s  of a 

The t e n s i l e  

Figure 19 i s  

This f igu re  i s  a p l o t  

The exposure 

Studies have been conducted by several  inves t iga tors  t o  de l inea te  the  

important var iables  involved i n  cont ro l l ing  t h e  f r i c t i o n  coe f f i c i en t  of 

metals i n  vacuum. Some of t h e  more extensive work i s  t h a t  conducted by 
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B ~ c k l e y . ~ ~  

system i s  pumped by the  use of a cryosorption rough pump, a sput te r - ion  pump, 

The system employed by Buckley is shown i n  figure 20.43 This 

and a cryopump and is  capable of pressures less than t o r r .  The cryo- 

pump is simply a metal surface cooled t o  temperatures near l i qu id  helium 

and exposed t o  the  vacuum environment. An e lec t ron  beam gun i s  employed t o  

help clean contacting surfaces  by e lec t ron  bombardment. This gun is  a l s o  

used t o  heat  the  contacting surfaces  t o  the  des i red  temperature and t h e  

cryopump is employed t o  cool t he  contact surfaces when desired.  A disk i n  

contact with a r i d e r  i s  ro t a t ed  by a magnetic dr ive  and t h e  f r i c t i o n  force  

is  determined by a s t r a i n  gage on the  r i d e r  arm. The contact load between 

the disk and r i d e r  i s  applied by a dead-weight load system as  shown. 

example of da ta  taken i n  such a system is  work conducted on copper. 

An 
- 

Copper, 

when exposed t o  laboratory a i r ,  has l i t t l e  tendency t o  self-weld and has a 

f r i c t i o n  coe f f i c i en t  of 1.2;  however, i n  a vacuum environment, copper s e l f -  

welds readi ly  and i ts  f r i c t i o n  coef f ic ien t  p r i o r  t o  complete se izure  i s  i n  

excess of 40. 44 

Space Environment Simulation 

Vacuum is,  of course, one important parameter i n  any system designed 

t o  simulate the  space environment. 

environment simulator capable of operating a t  pressures below 10-1 

i n  combination with photon and charged-particle rad ia t ion ,  micrometeoroid 

Figure 21(a) is a schematic of a space 

t o r r 4 5  

bombardment, and temperature which i s  used f o r  s tud ies  of mater ia l  propert ies  

which may be influenced by exposure t o  the  space environment. 

The vacuum chamber is  shown i n  g rea t e r  d e t a i l  i n  f igu re  21(b). I t  is 

8 f t  i n  diameter and 11 f t  long with a hinged end door. The chamber is pumped 
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by a 32-inch o i l -d i f fus ion  pump due t o  i ts  la rge  volume and a 5 - f t  diameter 

by 5-ft-long cy l indr ica l  cryopump array t o  fac i l i t a te  the  attainment of low 

pressures.  

outer  s h e l l  and f o r  chevron panels which p ro tec t  t he  20" Kelvin helium cryo- 

panels from thermal rad ia t ion .  The system is designed t o  achieve a pressure 

of t o r r  i n  1 2  hours after bakeout of t h e  chamber. 

The cryopump array is designed t o  use l i qu id  ni t rogen f o r  t h e  

Some Unique Devices and Concepts 

Because a vacuum i s ,  i n  general, t h e  most nonreactive environment ava i l -  

able,  i t  has appl icat ion t o  apparatus o r  devices which are used t o  study 

fundamental cha rac t e r i s t i c s  of materials, such as t h e  e lec t ron  microscope, 

low-energy-electron d i f f r ac t ion  apparatus, e t c .  

what has generally been discussed t o  t h i s  point  i n  t h a t  they a re  too ls  f o r  

study of materials and not f o r  making mater ia ls  tests pe r  se. 

devices which u t i l i z e  r a the r  unique vacuum techniques and concepts w i l l  be  

discussed b r i e f l y  . 

These apparatus d i f f e r  from 

Some of these 

The contamination of t a rge t s  i n  such instruments as ion accelerators  

and e lec t ron  microscopes has always been a problem. 

or iginates  from such components as the  e lec t ron  o r  i on  source, t he  numerous 

polymeric materials generally used as both s ta t ic  and dynamic vacuum seals, 

the focusing and condensing c o i l s ,  t he  vacuum pumping system i t s e l f ,  e t c .  

A s  has been discussed e a r l i e r ,  such items i n  the  vacuum environment generally 

tend t o  l i m i t  system capabi l i ty  t o  above loW7 t o r r .  

of the  high gas loads required i n  these instruments, o i l -d i f fus ion  and 

mechanical pumps are used which can contr ibute  o i l  vapor as a contaminant. 

A simple and r e l a t i v e l y  inexpensive so lu t ion  t o  t h i s  problem of t a rge t  

This contamination 

Additionally, because 
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contaminat ion 

the  immediate 

i s  the  use of 

is t o  e s t ab l i sh  and maintain a r e l a t i v e l y  high vacuum only i n  

v i c i n i t y  of t he  t a rge t .  

t he  d i f f e r e n t i a l  pumping technique. 

One successful approach t o  t h i s  so lu t ion  

In  t h i s  technique two 

independent pumping systems a re  used - one system f o r  t he  t a rge t  chamber and 

the o ther  f o r  the  remainder of t h e  instrument vacuum column. 

and t h e  t a rge t  chamber are connected by a small o r i f i c e  which passes t h e  

beam but  which minimizes flow of contaminants i n t o  t h e  t a r g e t  chamber. 

such conditions,  a pressure difference of th ree  t o  four  orders of magnitude 

can be maintained with the  t a r g e t  chamber having a reasonably low pumping 

speed. 

The main column 

Under 

When t h e  primary beam i s  too wide t o  permit the  use of a l imited- 
- 

conductance o r i f i c e ,  it is many times possible  t o  separate  the  vacuum 

of the  t a r g e t  chamber from t h a t  of t h e  instrument by t h e  use of a membrane 

which is  permeable t o  the  beam and impermeable t o  o ther  gases. 

nique has been developed f o r  use on a conventional proton a ~ c e l e r a t o r . ~ ~  

th in  (200 t o  1000 8) f i l m  of A1203 i s  used as a beam window between t h e  

Such a tech- 

A 

normal acce lera tor  vacuum of 2 ~ 1 0 - ~  t o r r  and the  clean ta rge t -a rea  vacuum 

of 2 ~ 1 0 ~ ~ ~  t o r r .  

but impermeable t o  o ther  gases. 

This window is e s sen t i a l ly  t ransparent  t o  the  proton beam 

Another example of t he  use of  t he  d i f f e r e n t i a l  pumping technique is  an 

ul t rahigh vacuum e lec t ron  microscope i n  use i n  our laboratory.  The modified 

specimen chamber of a standard e lec t ron  microscope is  i so l a t ed  from the  main 

instrument by both the  limited-conductance and the  film-window techniques. 

The e lec t ron  beam is small i n  cross sec t ion  before it impinges on the  specimen; 

thus, t h e  limited-conductance technique is  f eas ib l e  a t  the  beam entrance t o  

the specimen chamber. A s  t he  beam passes through the  specimen, it spreads 
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and the  emergent beam i s  so  la rge  t h a t  t he  limited-conductance technique i s  

not f eas ib l e  f o r  t h e  chamber ex i t  window. 

i s  employed. 

In t h i s  case, a carbon-film window 

In  s i t u  s tud ie s  of nucleation on clean subs t ra tes47  and of 

other  phenomena which require  t h e  presence of an u l t rah igh  vacuum environment 

i n  such an instrument can thus be made. 

The development of o ther  instruments, which a r e  proving and have proved 

t o  be very useful  too ls  i n  t he  study of mater ia ls ,  have a l s o  come about by 

the development of ul t rahigh vacuum technology. 

low-energy-electron-diffraction apparatus, 48 t he  f i e ld - ion  microscope, 49  and 

Such instruments a re  t h e  

the  surface-ion mass s p e ~ t r o m e t e r . ~ ~  

tha t  i n  the  fu ture  many more such instruments w i l l  be  developed t o  help 

I t  is thus only reasonable t o  assume 

understand both the  bulk and surface behavior of mater ia l s .  

SIGNIFICANCE OF VACUUM TESTING 

I t  has been shown t h a t  materials t e s t i n g  i n  a vacuum environment can 

involve simple o r  complex vacuum apparatus, depending on t h e  vacuum require- 

ment of the  materials test  as d i c t a t ed  by the  p a r t i c u l a r  property and material 

being invest igated.  

influence of a vacuum environment on some proper t ies  of mater ia ls .  

most of these s tud ies  may be considered t o  be preliminary and, i n  general ,  

the findings have not been used i n  a p r a c t i c a l  manner by design engineers. 

Additionally, an attempt has been made t o  i nd ica t e  the  

To date ,  

I t  is the  author 's  opinion t h a t  mater ia ls  s tud ie s  i n  a vacuum environ- 

ment w i l l ,  i n  the fu ture ,  contr ibute  s ign i f i can t ly  t o  both the  s c i e n t i f i c  

and engineering understanding of materials;  as a r e s u l t ,  improved materials 

w i l l  be developed f o r  use both on ea r th  and i n  space. The s c i e n t i s t  i n t e re s t ed  
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i n  a b e t t e r  understanding of t h e  fundamental mechanisms involved i n  t h e  

behavior of materials has begun t o  realize t h e  s ignif icance of contributions 

of surfaces and t h e  surface environment t o  t h e  experimentally observed 

property. 

effects are understood, methods f o r  improving mater ia ls  f o r  use i n  various 

environments w i l l  become apparent t o  t h e  engineer. 

t h i s  d i rec t ion  is  under way. As an example, t h e  fa t igue  of metals is  a 

materials property which is  generally improved by the  presence of a vacuum 

environment. 

improved i n  the  e a r t h ' s  environment by the appl icat ion of a simple coating.23 

I t  is  reasonable t o  assume t h a t ,  when t h e  mechanics of t h e  surface 

Even now progress i n  

Recently, i t  has been shown t h a t  fa t igue  l i f e  can a l s o  be 
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FIGURE LEGENDS 

Fig. .- Schematic drawing of a single-beam spectrophotometer attac..ed t o  a 

vacuum system. 

Fig. 2.- The effect of pressure and s t r a i n  r a t e  on the  change i n  t h e  shear  

s t r a i n  a t  the  end of first l i n e a r  hardening of t h e  f irst  l i n e a r  

s tage  f o r  the  t e n s i l e  deformation of  monocrystal magnesium. 

3 . -  The ef fec t  of pressure on t h e  f a t igue  proper t ies  of polycrystal  Fig. 

magnesium a t  2 cps and 30 cps. 

Fig. 4. -  A pressure- ra t io  gage comparison system capable of  gage ca l ib ra t ion  

down t o  ~ x ~ O - ~ O  t o r r .  

Fig. 5.- The e f f e c t  of various gas environments on the  f a t igue  l i f e  of 

metals a t  2 cps. - 
Fig. 6.- Schematic drawing of a typ ica l  load-displacement sensing apparatus 

f o r  t e n s i l e  t e s t i n g  a t  vacuum leve ls  l e s s  than t o r r .  

F i g .  7 . -  Dynamic feedthroughs f o r  t he  transmission of motion i n t o  vacuum. 

(a) "0"-ring compression seal f o r  ro ta ry  and l i n e a r  motion; 

(b) Bellows s e a l  f o r  l i n e a r  motion; (e) Magnetic feedthrough f o r  

ro ta ry  motion; (d) Bellows sea led  wobble s t i c k  f o r  ro ta ry  motion; 

(e) Harmonic dr ive  feedthrough f o r  ro t a ry  motion ( r e f .  33) .  

Fig. 

F i g .  9.- Electron-beam, u l t rah igh  vacuum, zone-refining, and monocrystal 

8.- Simple method of f l u i d  transmission through a vacuum-chamber wall. 

growing apparatus. (a) Overall view of system; (b) Zone-refining 

module. 

Fig. 10.- The e f f ec t  of vacuum on the  t e n s i l e  proper t ies  of  magnesium, 
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F i g .  

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

- Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

11.- The e f f e c t  of vacuum on t h e  tensi le  propert ies  of magnesium 

monocrystals or iented f o r  g l i d e  on t h e  basa l  plane. 

12 . -  Schematic drawing of vacuum system designed t o  f i t  between the  

columns of a standard tensi le  t e s t  machine. 

13.- Internal  bakeout system f o r  vacuum apparatus using quartz-sealed 

tungsten res i s tance  hea ters .  

14.- The e f f e c t  of vacuum on the  fa t igue  propert ies  of polycrystal  

magnesium- thorium a1 loy . 
15.- Perspective drawing of vacuum fa t igue  apparatus designed t o  f i t  

on a standard fa t igue  t e s t i n g  machine. 

16.- Comparison of the  creep propert ies  of polycrystal  magnesium i n  

vacuum and i n  an air-argon environment a t  760 t o r r .  

17.- Schematic drawing of a vacuum torsional-creep apparatus capable of 

pressures down t o  t o r r  and temperatures up t o  600°C. 

18.- Ultrahigh vacuum, high-temeprature creep apparatus capable of 

pressures down t o  5 ~ 1 0 - l ~  t o r r  and temperature up t o  3000°C. 

(a) Overall view of system; (b) V i e w  of vacuum chamber i n t e r i o r  

showing furnace. 

19.- Effect of exposure t o  various gas environments on the coef f ic ien t  

of adhesion of aluminum. 

20.- Vacuum apparatus f o r  f r i c t i o n  t e s t i n g .  

21 . -  Schematic drawing of a space environment simulator designed t o  

simulate vacuum, photon, and charged-particle rad ia t ion ,  micro- 

meteoroid bombardment, and temperature. (a) Plan view of overa l l  

system; (b) Cross-sectional drawing of vacuum chamber capable of 

pressures down t o  t o r r .  
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Figure 21(a). 

Figure 21(b). 

NATIONAL AERONAUTICS A N D  SPACE ADMINISTRATION 
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA 


